Supersonic aircraft - history of development. Supersonic aircraft: history of development Foreign airliner with supersonic speed 7 letters

Supersonic speed is the speed at which an object moves faster than sound. The flight speed of a supersonic aircraft is measured in Mach - the speed of the aircraft at a certain point in space relative to the speed of sound at the same point. Nowadays it is quite difficult to surprise with such speeds of movement, but just some 80 years ago this was only a dream.

Where it all started

In the forties of the twentieth century, during the Second World War, German designers actively worked on resolving this issue, hoping to use such aircraft to turn the tide of the war. As we know, they didn’t succeed, the war ended. However, in 1945, closer to its completion, the German pilot L. Hoffmann, testing the world's first jet fighter Me-262, was able to reach a speed of about 980 km/h at an altitude of 7200 m.

The first person to realize the dream of all pilots about breaking the supersonic barrier was American test pilot Chuck Yeager. In 1947, this pilot was the first in history to overcome the speed of sound in a manned vehicle. He flew the prototype rocket-powered Bell X-1 aircraft. By the way, German scientists and their developments captured during the war greatly contributed to the appearance of this device, as well as, in fact, to the entire further development of flight technologies.

The speed of sound was reached in the Soviet Union on December 26, 1948. It was an experimental aircraft LA-176, at a flight altitude of 9060 m, piloted by I.E. Fedorov and O.V. Sokolovsky. About a month later, on this aircraft, but with a more advanced engine, the speed of sound was not only reached, but also exceeded by 7000 m. The LA-176 project was very promising, but due to the tragic death of O.V. Sokolovsky, who controlled this apparatus, the developments were closed.

Subsequently, the development of this industry slowed down somewhat, as a significant number of physical difficulties arose associated with controlling an aircraft at supersonic speeds. At high speeds, such a property of air as compressibility begins to manifest itself, and aerodynamic streamlining becomes completely different. Wave resistance appears, and such an unpleasant phenomenon for any pilot as flutter - the plane begins to heat up very much.

Faced with these problems, designers began to look for a radical solution that could overcome the difficulties. This decision turned out to be a complete revision of the design of aircraft intended for supersonic flights. The streamlined shapes of airliners that we now see are the result of many years of scientific research.

Further development

At that time, when the Second World War had just ended and the Korean and Vietnamese wars began, the development of the industry could only occur through military technologies. That is why the first production aircraft capable of flying faster than the speed of sound were the Soviet Mig-19 (NATO Farmer) and the American F-100 Super Saber. The speed record was held by an American aircraft - 1215 km/h (set on October 29, 1953), but already at the end of 1954 the Mig-19 was able to accelerate to 1450 km/h.

Interesting fact. Although the USSR and the United States of America did not conduct official military operations, real repeated combat clashes during the Korean and Vietnam Wars showed the undeniable advantage of Soviet technology. For example, our Mig-19s were much lighter, had engines with better dynamic characteristics and, as a result, a faster rate of climb. The radius of possible combat use of the aircraft was 200 km greater than that of the Mig-19. That is why the Americans really wanted to get their hands on an intact sample and even announced a reward for completing such a task. And it was realized.

After the end of the Korean War, 1 Mig-19 aircraft was hijacked from an air base by Korean Air Force officer No Geum Seok. For which the Americans paid him the required $100,000 as a reward for delivering an undamaged aircraft.

Interesting fact. The first female pilot to reach the speed of sound is American Jacqueline Cochran. She reached speeds of 1,270 km/h while piloting an F-86 Saber aircraft.

Development of civil aviation

In the 60s of the last century, after the appearance of technical developments tested during the wars, aviation began to develop rapidly. Solutions were found for the existing problems of supersonic speeds, and then the creation of the first supersonic passenger aircraft began.

The first ever flight of a civilian airliner faster than the speed of sound occurred on August 21, 1961, on a Douglas DC-8. There were no passengers on the aircraft other than the pilots at the time of the flight, and ballast was placed to accommodate the full load of the aircraft under these experimental conditions. A speed of 1262 km/h was reached while descending from an altitude of 15877 m to 12300 m.

Interesting fact. On February 19, 1985, a China Airlines Boeing 747 SP-09 entered an uncontrollable dive while flying from Taiwan's Taipei to Los Angeles. The reason for this was engine malfunctions and subsequent unqualified actions of personnel. During the dive from an altitude of 12,500 m to 2,900 m, where the crew was able to stabilize the aircraft, the speed of sound was exceeded. At the same time, the airliner, not designed for such overloads, received serious damage to the tail section. However, with all this, only 2 people on board were seriously injured. The plane landed in San Francisco, was repaired and subsequently carried out passenger flights again.

However, all two types of truly real supersonic passenger aircraft (SPS), capable of regular flights at speeds above the speed of sound, were designed and built:

  • Soviet airliner Tu-144;
  • Anglo-French aircraft Aérospatiale-BAC Concorde.

Only these two aircraft were able to maintain supersonic cruising speed. At that time, they were superior to even most combat aircraft; the design of these airliners was unique for their time. There were only a few types of aircraft capable of supercruise; today, most modern military vehicles are equipped with such capabilities.

Aviation of the USSR

The Soviet Tu-144 was built somewhat earlier than its European counterpart, so it can be considered the world's first supersonic passenger airliner. The appearance of these aircraft, both Tu-144 and Concorde, will not leave any person indifferent even now. It is unlikely that there have been more beautiful aircraft in the history of aircraft manufacturing.

The Tu-144 has attractive characteristics, with the exception of the range of practical use: higher cruising speed and lower landing speed, higher flight ceiling, but the history of our airliner is much more tragic.

Important! The Tu-144 is not only the first flying, but also the first crashed supersonic passenger airliner. The crash at the Le Bourget air show on June 3, 1973, in which 14 people died, was the first step towards the end of Tu-144 flights. Unambiguous causes have never been established, and the final version of the disaster raises many questions.

The second crash near Yegoryevsk in the Moscow region on May 23, 1978, where a fire occurred during the flight and 2 crew members died during landing, became the final point in the decision to stop operating these aircraft. Despite the fact that after analysis it was established that the fire occurred as a result of a defect in the fuel system of the new engine being tested, and the aircraft itself showed excellent controllability and reliability of the design, when the one on fire was able to land, the aircraft were removed from flights and taken out of commercial operation .

How it turned out abroad

The European Concorde, in turn, flew for much longer, from 1976 to 2003. However, due to unprofitability (the aircraft could not be brought to the minimum payback), the operation was also eventually curtailed. This was largely due to the plane crash in Paris on July 25, 2000: during takeoff from Charles De Gaulle airport, the engine caught fire and the plane crashed to the ground (113 people died, including 4 on the ground), as well as the terrorist attacks of September 11 2001 Despite the fact that this was the only accident of the aircraft in 37 years of operation, and the terrorist attacks were not directly related to Concorde, the general decrease in passenger flow reduced the already lacking profitability of flights and led to the fact that this aircraft made its last flight on route Heathrow - Filton 26 November 2003

Interesting fact. A ticket for a Concorde flight in the 70s cost at least $1,500 one way; towards the end of the nineties, the price rose to $4,000. A ticket for a seat on the last flight of this liner already cost $10,000.

Supersonic aviation at the moment

To date, solutions similar to the Tu-144 and Concorde are not expected. But, if you are the kind of person who doesn’t care about the cost of tickets, there are a number of developments in the field of business flights and small-capacity aircraft.

The most promising development is the XB-1 Baby Boom aircraft from the American company Boom technology from Colorado. It is a small aircraft, about 20 m long and with a wingspan of 5.2 m. It is equipped with 3 engines developed in the fifties for cruise missiles.

The capacity is planned to be about 45 people, with a flight range of 1800 km at speeds up to Mach 2. At the moment, this is still a development, but the first flight of the prototype is planned for 2018, and the aircraft itself must be certified by 2023. The creators plan to use the development both as a business jet for private transportation and on regular low-capacity flights. The planned cost for a flight on this car will be about $5,000, which is quite a lot, but comparable to the cost of a business class flight.

However, if you look at the entire civil aviation industry as a whole, then with today’s level of technology development, everything does not look very promising. Large companies are more concerned with profitability and profitability of projects than with new developments in the field of supersonic flight. The reason is that throughout the history of aviation there have not been sufficiently successful implementations of tasks of this kind; no matter how many attempts were made to achieve the goals, they all failed to one degree or another.

In general, those designers who are involved in current projects are rather enthusiasts who are optimistic about the future, who, of course, expect to make a profit, but are quite realistic about the results, and most of the projects still exist only on paper, and there are enough analysts are skeptical about the possibility of their implementation.

One of the few truly large projects is the Concorde-2 supersonic aircraft patented last year by Airbus. Structurally, it will be an aircraft with three types of engines:

  • Turbofan jet engines. Will be installed at the front of the aircraft;
  • Hypersonic air-breathing engines. They will be mounted under the wings of the airliner;
  • Rocket engines. Installed in the rear fuselage.

This design feature involves the operation of different engines at certain stages of flight (takeoff, landing, movement at cruising speed).

Taking into account one of the main problems of civil air travel - noise (air traffic management standards in most countries set a limit on the noise level, if the airport is located close to residential areas, this imposes restrictions on the possibility of night flights), Airbus has developed a special technology for the Concorde-2 project allowing vertical takeoff. This will practically avoid shock waves from hitting the surface of the earth, which in turn will ensure no discomfort for people below. Also, thanks to a similar design and technology, the flight of the airliner will take place at an altitude of about 30-35,000 m (at the moment, civil aviation flies at a maximum of 12,000 m), which will help reduce noise not only during take-off, but throughout the entire flight, since At such a height, shock waves will not be able to reach the surface.

The future of supersonic flight

Not everything is as sad as it might seem at first glance. In addition to civil aviation, there is and will always exist the military industry. The combat needs of the state have driven the development of aviation as before and will continue to do so. The armies of all states need more and more advanced aircraft. From year to year this need only increases, which entails the creation of new design and technological solutions.

Sooner or later, development will reach a level where the use of military technologies may become profitable for peaceful purposes.

Video

TASS DOSSIER. On January 25, 2018, Russian President Vladimir Putin visited the Kazan Aviation Plant named after. S.P. Gorbunova (a branch of Tupolev PJSC) was present at the demonstration flight of the new supersonic strategic missile carrier Tu-160 "Peter Deinekin" and proposed to create a civilian version of this aircraft.

The editors of TASS-DOSSIER have prepared information about domestic and foreign programs to create supersonic passenger airliners.

Start of development

Research into supersonic civil aviation began in the UK, France and the USA in the late 1950s. The first preliminary designs of the corresponding passenger airliners appeared in the West in the early 1960s. At the same time, the Soviet Union began developing its own supersonic aircraft.

Tu-144

On July 16, 1963, a resolution was issued by the Central Committee of the CPSU and the Council of Ministers of the USSR “On the creation of the Tupolev Design Bureau of a supersonic passenger aircraft Tu-144 with four jet engines and on the construction of a batch of such aircraft.” The general management of the project was carried out by the general designer of the OKB Andrei Tupolev, and after his death in 1972 - the designer’s son, Alexey Tupolev.

A prototype Tu-144 (tail number USSR-68001) made its first flight on December 31, 1968.

The production of serial copies of the Tu-144 was launched at the Voronezh Aviation Plant (now PJSC VASO as part of the UAC). In total, from 1972 to 1984, 17 production vehicles were produced, of which three underwent static tests, 14 were operated (including two with passengers), two crashed in plane crashes, and one was never completed. Between November 1977 and May 1978, two Tu-144s operated 55 flights between Moscow and Almaty, carrying a total of 3,284 passengers.

In 1978, after the second disaster, the operation of the Tu-144 was stopped, and the program itself was curtailed. Work on creating a modification of the Tu-144DA (with an increased flight range) was not developed.

Concorde

Aerospatiale/BAC Concorde (“Concorde”, from the French “consent”) has been created since 1962 by the French company Aerospatiale together with the British Aircraft Corporation. The prototype (registration number - F-WTSS) took off two months after the first flight of the Tu-144 - March 2, 1969.

A total of 20 aircraft were built between 1965 and 1979. 14 of them were operated by Air France and British Airways on scheduled passenger routes from 1976 to 2003, mainly for transatlantic flights on routes to New York from Paris and London. On average, the plane covered the distance between Paris and New York in 3.5 hours.

During the entire operation of Concorde, one disaster occurred with aircraft of this type. On July 25, 2000, while taking off from Paris, an Air France aircraft with registration number F-BTSC crashed due to a foreign object on the runway. Then 109 people on board and four people on the ground died.

In just 27 years of operation, Concorde carried more than 2.5 million passengers. Air France and British Airways finally abandoned the operation of aircraft of this type due to a decline in passenger traffic caused by the terrorist attacks in the United States on September 11, 2001, rising costs of maintaining aircraft in flight readiness and the lack of prospects for their modernization.

American program of the 1960s

On June 5, 1963, US President John Kennedy announced the launch of a national program to create a supersonic passenger airliner, proposing to reimburse 75% of the development company's costs from the state. The goal of the program was to compete with the Concorde project. Boeing, Lockheed and North American corporations expressed their intention to create a new aircraft, proposing, respectively, the Boeing 2707, Lockheed L-2000 and a civilian version of the XB-70 Valkyrie strategic bomber.

The most promising project was the Boeing 2707 - a wide-body airliner designed to carry 277 passengers over a distance of up to 7.8 thousand km at a speed of 2 thousand 900 km/h. A full-scale model of the aircraft was built, Boeing received 120 orders from US airlines.

However, in 1971, it became obvious that the American program was lagging behind the European Concorde and the Soviet Tu-144. As a result, the US Congress stopped funding it. Boeing and other companies refused to continue it at their own expense.

Other projects

The experience of the Tu-144 and Concorde programs has shown that the operation of aircraft of this type has a number of disadvantages compared to conventional, subsonic airliners. In particular, due to the high fuel consumption and high cost of maintenance, supersonic passenger airliners are very difficult to make profitable. It was also not possible to solve problems with the noise of aircraft engines, as well as explosion-like sonic booms at the moment of transition to supersonic.

However, research in this area continues to this day. Thus, in 2016, the American Boom Technology announced the development of a 40-seat aircraft capable of covering the distance between Los Angeles and Sydney in six hours. The American companies Aerion and Lockheed Martin are working on a project of a three-engine supersonic business jet Aerion AS2 for 12 passengers, the first deliveries of which are scheduled for 2023. Another American company, Spike Aerospace, plans to certify its Spike S-512 business jet, designed to carry 18 passengers, in the same 2023.

The Central Aerohydrodynamic Institute (TsAGI, Zhukovsky, Moscow region) presented at the MAKS-2017 international aerospace salon a prototype of a supersonic business jet that could be created within the next ten years. Among the canceled projects of this kind are Sukhoi Supersonic Business Jet, Tu-344 (business jet based on the Tu-22M3 missile carrier), Tu-444, etc., NASA High Speed ​​Civil Transport program (1990-1999).

Tu-144 is a Soviet supersonic aircraft developed by the Tupolev Design Bureau in the 1960s. Along with Concorde, it is one of only two supersonic airliners ever used by airlines for commercial travel.

In the 60s, projects to create a passenger supersonic aircraft with a maximum speed of 2500-3000 km/h and a flight range of at least 6-8 thousand km were actively discussed in aviation circles in the USA, Great Britain, France and the USSR. In November 1962, France and Great Britain signed an agreement on the joint development and construction of Concorde (Concord).

Creators of a supersonic aircraft

In the Soviet Union, the design bureau of academician Andrei Tupolev was involved in the creation of a supersonic aircraft. At a preliminary meeting of the Design Bureau in January 1963, Tupolev stated:

“Reflecting on the future of air transportation of people from one continent to another, you come to a clear conclusion: supersonic airliners are undoubtedly needed, and I have no doubt that they will come into use…”

The academician's son, Alexey Tupolev, was appointed as the lead designer of the project. More than a thousand specialists from other organizations worked closely with his design bureau. The creation was preceded by extensive theoretical and experimental work, which included numerous tests in wind tunnels and natural conditions during analogue flights.

Concorde and Tu-144

The developers had to rack their brains to find the optimal design for the machine. The speed of the designed airliner is fundamentally important - 2500 or 3000 km/h. The Americans, having learned that the Concorde is designed for 2500 km/h, announced that just six months later they would release their passenger Boeing 2707, made of steel and titanium. Only these materials could withstand the heating of the structure when in contact with air flow at speeds of 3000 km/h and above without destructive consequences. However, solid steel and titanium structures still have to undergo serious technological and operational testing. This will take a lot of time, and Tupolev decides to build a supersonic aircraft from duralumin, designed for a speed of 2500 km/h. The American Boeing project was subsequently completely closed.

In June 1965, the model was shown at the annual Paris Air Show. Concorde and Tu-144 turned out to be strikingly similar to each other. Soviet designers said - nothing surprising: the general shape is determined by the laws of aerodynamics and the requirements for a certain type of machine.

Supersonic aircraft wing shape

But what should the wing shape be? We settled on a thin delta wing with the front edge shaped like the letter “8”. The tailless design - inevitable with such a design of the load-bearing plane - made the supersonic airliner stable and well controllable in all flight modes. Four engines were located under the fuselage, closer to the axis. The fuel is placed in coffered wing tanks. The trim tanks, located in the rear fuselage and wing swells, are designed to change the position of the center of gravity during the transition from subsonic to supersonic flight speeds. The nose was made sharp and smooth. But how can pilots have forward visibility in this case? They found a solution - the “bowing nose.” The fuselage had a circular cross-section and had a cockpit nose cone that tilted downward at an angle of 12 degrees during takeoff and 17 degrees during landing.

A supersonic plane takes to the skies

The first supersonic aircraft took to the skies on the last day of 1968. The car was flown by test pilot E. Elyan. As a passenger aircraft, it was the first in the world to overcome the speed of sound in early June 1969, at an altitude of 11 kilometers. The supersonic aircraft reached the second speed of sound (2M) in mid-1970, at an altitude of 16.3 kilometers. The supersonic aircraft incorporates many design and technical innovations. Here I would like to note such a solution as the front horizontal tail. When using PGO, flight maneuverability was improved and speed was reduced during landing. The domestic supersonic aircraft could be operated from two dozen airports, while the French-English Concorde, having a high landing speed, could land only at a certified airport. The designers of the Tupolev Design Bureau did a colossal job. Take, for example, full-scale tests of a wing. They took place on a flying laboratory - the MiG-21I, modified specifically for testing the design and equipment of the wing of the future supersonic aircraft.

Development and modification

Work on the development of the basic “044” design went in two directions: the creation of a new economical afterburning turbojet engine of the RD-36-51 type and a significant improvement in the aerodynamics and design of the supersonic aircraft. The result of this was to meet the requirements for supersonic flight range. The decision of the commission of the USSR Council of Ministers on the version of the supersonic aircraft with the RD-36-51 was made in 1969. At the same time, at the proposal of the MAP - MGA, a decision is made, before the creation of the RD-36-51 and their installation on a supersonic aircraft, on the construction of six supersonic aircraft with NK-144A with reduced specific fuel consumption. The design of serial supersonic aircraft with the NK-144A was supposed to be significantly modernized, significant changes in aerodynamics would be made, obtaining a Kmax of more than 8 in supersonic cruising mode. This modernization was supposed to ensure the fulfillment of the requirements of the first stage in terms of range (4000-4500 km), and in the future it was planned to transition to series on RD-36-51.

Construction of a modernized supersonic aircraft

Construction of the pre-production modernized Tu-144 (“004”) began at MMZ “Experience” in 1968. According to calculated data with NK-144 engines (Cp = 2.01), the estimated supersonic range should have been 3275 km, and with NK-144A (Cp = 1.91) it should have exceeded 3500 km. In order to improve the aerodynamic characteristics in cruising mode M = 2.2, the wing planform was changed (the sweep of the floating part along the leading edge was reduced to 76°, and the base part was increased to 57°), the shape of the wing became closer to “Gothic”. Compared to "044", the wing area has increased, and a more intense conical twist of the wing ends has been introduced. However, the most important innovation in wing aerodynamics was the change in the middle part of the wing, which ensured self-balancing in cruising mode with minimal loss of quality, taking into account optimization of flight deformations of the wing in this mode. The length of the fuselage was increased to accommodate 150 passengers, and the shape of the nose was improved, which also had a positive effect on aerodynamics.

Unlike “044”, each pair of engines in paired engine nacelles with air intakes was moved apart, freeing the lower part of the fuselage from them, unloading it from increased temperature and vibration loads, while changing the lower surface of the wing in the place of the calculated area of ​​flow compression, increasing the gap between the lower surface wing and the upper surface of the air intake - all this made it possible to more intensively use the effect of compressing the flow at the entrance to the air intakes on the Kmax than was possible to achieve on the “044”. The new layout of the engine nacelles required changes to the chassis: the main landing gear was placed under the engine nacelles, with them retracted inside between the air ducts of the engines, they switched to an eight-wheeled trolley, and the scheme for retracting the nose landing gear also changed. An important difference between the “004” and the “044” was the introduction of a front multi-section destabilizer wing retractable in flight, which extended from the fuselage during takeoff and landing modes, and made it possible to provide the required balancing when the elevons-flaps were deflected. Improvements to the design, an increase in payload and fuel reserves led to an increase in take-off weight, which exceeded 190 tons (for “044” - 150 tons).

Pre-production Tu-144

Construction of pre-production supersonic aircraft No. 01-1 (tail No. 77101) was completed at the beginning of 1971, and made its first flight on June 1, 1971. According to the factory test program, the vehicle completed 231 flights, lasting 338 hours, of which 55 hours flew at supersonic speed. This machine was used to work out complex issues regarding the interaction of the power plant in various flight modes. On September 20, 1972, the car flew along the Moscow-Tashkent highway, while the route was covered in 1 hour 50 minutes, the cruising speed during the flight reached 2500 km/h. The pre-production vehicle became the basis for the deployment of serial production at the Voronezh Aviation Plant (VAZ), which, by decision of the government, was entrusted with the development of a supersonic aircraft in a series.

First flight of the production Tu-144

The first flight of serial supersonic aircraft No. 01-2 (tail No. 77102) with NK-144A engines took place on March 20, 1972. In the series, based on the results of tests of the pre-production vehicle, the aerodynamics of the wing were adjusted and its area was once again slightly increased. The take-off weight in the series reached 195 tons. By the time of operational testing of production vehicles, the specific fuel consumption of the NK-144A was intended to be increased to 1.65-1.67 kg/kgf/hour by optimizing the engine nozzle, and subsequently to 1.57 kg/kgf/hour, while the flight range should was increased to 3855-4250 km and 4550 km, respectively. In reality, they were able to achieve by 1977, during testing and development of the Tu-144 and NK-144A series, Average = 1.81 kg/kgf hour in cruising supersonic thrust mode 5000 kgf, Average = 1.65 kg/kgf hour in takeoff afterburner thrust mode 20,000 kgf, Av = 0.92 kg/kgf per hour in the cruising subsonic mode of thrust 3000 kgf and in the maximum afterburning mode in the transonic mode we received 11,800 kgf. A fragment of a supersonic aircraft.

Flights and tests of a supersonic aircraft

First stage of testing

In a short period of time, in strict accordance with the program, 395 flights were completed with a total flight time of 739 hours, including more than 430 hours in supersonic modes.

Second stage of testing

At the second stage of operational testing, in accordance with the joint order of the ministers of aviation industry and civil aviation dated September 13, 1977 No. 149-223, a more active connection of civil aviation facilities and services took place. A new testing commission was formed, headed by Deputy Minister of Civil Aviation B.D. Rude. By decision of the commission, then confirmed by a joint order dated September 30 - October 5, 1977, crews were appointed to conduct operational tests:

  1. First crew: pilots B.F. Kuznetsov (Moscow State Transport Administration), S.T. Agapov (ZhLIiDB), navigator S.P. Khramov (MTU GA), flight engineers Yu.N. Avaev (MTU GA), Yu.T. Seliverstov (ZhLIiDB), leading engineer S.P. Avakimov (ZhLIiDB).
  2. Second crew: pilots V.P. Voronin (MSU GA), I.K. Vedernikov (ZhLIiDB), navigator A.A. Senyuk (MTU GA), flight engineers E.A. Trebuntsov (MTU GA) and V.V. Solomatin (ZhLIiDB), leading engineer V.V. Isaev (GosNIIGA).
  3. Third crew: pilots M.S. Kuznetsov (GosNIIGA), G.V. Voronchenko (ZhLIiDB), navigator V.V. Vyazigin (GosNIIGA), flight engineers M.P. Isaev (MTU GA), V.V. Solomatin (ZhLIiDB), leading engineer V.N. Poklad (ZhLIiDB).
  4. Fourth crew: pilots N.I. Yurskov (GosNIIGA), V.A. Sevankaev (ZhLIiDB), navigator Yu.A. Vasiliev (GosNIIGA), flight engineer V.L. Venediktov (GosNIIGA), leading engineer I.S. Mayboroda (GosNIIGA).

Before the start of testing, a lot of work was done to review all the materials received in order to use them “for credit” for meeting specific requirements. However, despite this, some civil aviation specialists insisted on implementing the “Operational Test Program for Supersonic Aircraft,” developed at GosNIIGA back in 1975 under the leadership of leading engineer A.M. Teteryukov. This program essentially required the repetition of previously completed flights in the amount of 750 flights (1200 flight hours) on MGA routes.

The total volume of operational flights and tests for both stages will be 445 flights with 835 flight hours, of which 475 hours are in supersonic modes. 128 paired flights were performed on the Moscow-Alma-Ata route.

The final stage

The final stage of testing was not stressful from a technical point of view. Rhythmic work according to schedule was ensured without serious failures or major defects. The engineering and technical crews “had fun” by assessing household equipment in preparation for passenger transportation. Flight attendants and relevant specialists from GosNIIGA, who were involved in the tests, began to conduct ground training to develop the technology for servicing passengers in flight. The so-called “pranks” and two technical flights with passengers. The “raffle” was held on October 16, 1977 with a complete simulation of the cycle of ticket check-in, baggage check-in, passenger boarding, flight of actual duration, passenger disembarkation, baggage check-in at the destination airport. There was no end to the “passengers” (the best workers of OKB, ZhLIiDB, GosNIIGA and other organizations). The diet during the “flight” was at the highest level, since it was based on the first class menu, everyone enjoyed it very much. The “raffle” made it possible to clarify many important elements and details of passenger service. On October 20 and 21, 1977, two technical flights were carried out along the Moscow-Alma-Ata highway with passengers. The first passengers were employees of many organizations that were directly involved in the creation and testing of the supersonic aircraft. Today it is even difficult to imagine the atmosphere on board: there was a feeling of joy and pride, great hope for development against the backdrop of first-class service, to which technical people are absolutely not accustomed. On the first flights, all the heads of the parent institutes and organizations were on board.

The road is open for passenger traffic

The technical flights went off without any serious problems and showed that the supersonic aircraft and all ground services were fully prepared for regular transportation. On October 25, 1977, the Minister of Civil Aviation of the USSR B.P. Bugaev and the Minister of Aviation Industry of the USSR V.A. Kazakov approved the main document: “Act on the results of operational tests of a supersonic aircraft with NK-144 engines” with a positive conclusion and conclusions.

Based on the presented tables of compliance of the Tu-144 with the requirements of the Temporary Airworthiness Standards for Civilian Tu-144 of the USSR, the full volume of submitted evidentiary documentation, including acts on state and operational tests, on October 29, 1977, Chairman of the State Aviation Register of the USSR I.K. Mulkijanov approved the conclusion and signed the first airworthiness certificate in the USSR, type No. 03-144, for a supersonic aircraft with NK-144A engines.

The road was open for passenger traffic.

The supersonic aircraft could land and take off at 18 airports in the USSR, while Concorde, whose takeoff and landing speed was 15% higher, required a separate landing certificate for each airport. According to some experts, if the Concorde engines had been placed in the same way as the Tu-144, the accident on July 25, 2000 would not have occurred.

According to experts, the design of the Tu-144 airframe was ideal, but the shortcomings concerned the engines and various systems.

The second production copy of a supersonic aircraft

In June 1973, the 30th International Paris Air Show took place in France. The interest generated by the Soviet Tu-144 airliner, the world's first supersonic aircraft, was enormous. On June 2, thousands of visitors to the air show in the Paris suburb of Le Bourget watched the second production copy of a supersonic aircraft take to the runway. The roar of four engines, a powerful take-off - and now the car is in the air. The sharp nose of the airliner straightened and aimed at the sky. The supersonic Tu, led by Captain Kozlov, made its first demonstration flight over Paris: having gained the required altitude, the car went beyond the horizon, then returned and circled over the airfield. The flight proceeded normally, no technical problems were noted.

The next day, the Soviet crew decided to show everything that the new one was capable of.

Disaster during demonstration

The sunny morning of June 3 did not seem to foretell trouble. At first everything went according to plan - the audience raised their heads and applauded in unison. The supersonic aircraft, showing the “top class”, began to descend. At that moment, a French Mirage fighter appeared in the air (as it later turned out, it was filming an air show). A collision seemed inevitable. In order not to crash into the airfield and spectators, the crew commander decided to rise higher and pulled the steering wheel towards himself. However, the height had already been lost, creating large loads on the structure; As a result, the right wing cracked and fell off. A fire started there, and a few seconds later the flaming supersonic plane rushed to the ground. A terrible landing occurred on one of the streets of the Parisian suburb of Goussainville. The giant machine, destroying everything in its path, crashed to the ground and exploded. The entire crew - six people - and eight Frenchmen on the ground were killed. Goosenville also suffered - several buildings were destroyed. What led to the tragedy? According to most experts, the cause of the disaster was the attempt of the crew of a supersonic aircraft to avoid a collision with the Mirage. During landing, the Tu was caught in a wake from the French Mirage fighter.

Video: Tu-144 crash in 1973: how it happened

This version is given in Gene Alexander’s book “Russian Airplanes Since 1944” and in an article in Aviation Week and Space Technology magazine for June 11, 1973, written on fresh tracks. The authors believe that pilot Mikhail Kozlov landed on the wrong runway - either due to a mistake by the flight director, or due to the carelessness of the pilots. The controller noticed the error in time and warned the Soviet pilots. But instead of going around, Kozlov made a sharp turn - and found himself right in front of the French Air Force fighter. At that time, the co-pilot was filming a story about the Tu crew for French television with a movie camera and therefore was not wearing a seatbelt. During the maneuver, he fell onto the center console, and while he was returning to his place, he had already lost altitude. Kozlov sharply pulled the steering wheel towards himself - overload: the right wing could not stand it. Here is another explanation for the terrible tragedy. Kozlov received orders to get the most out of the car. Even during takeoff, at low speed, he took an almost vertical angle. For a liner with such a configuration, this is fraught with enormous overloads. As a result, one of the external nodes could not stand it and fell off.

According to the employees of the A.N. Tupolev Design Bureau, the cause of the disaster was the connection of an undebugged analog block of the control system, which led to a destructive overload.

The spy version belongs to writer James Alberg. Briefly it is like this. The Soviets tried to “furnish” the Concorde. Group N.D. Kuznetsova created good engines, but they could not operate at low temperatures, unlike the Concorde ones. Then Soviet intelligence officers got involved. Penkovsky, through his agent Greville Wine, obtained part of the Concorde drawings and sent them to Moscow through an East German trade representative. British counterintelligence thus identified the leak, but instead of arresting the spy, it decided to let disinformation into Moscow through his own channels. As a result, the Tu-144 was born, very similar to the Concorde. It is difficult to establish the truth, since the “black boxes” did not clarify anything. One was found in Bourges, at the crash site, but, judging by reports, damaged. The second one was never discovered. It is believed that the “black box” of a supersonic aircraft has become a point of contention between the KGB and the GRU.

According to the pilots, emergency situations occurred on almost every flight. On May 23, 1978, the second supersonic plane crashed. An improved experimental version of the airliner, Tu-144D (No. 77111), after a fuel fire in the engine nacelle area of ​​the 3rd power plant due to the destruction of the fuel line, smoke in the cabin and the crew turning off two engines, made an emergency landing on a field near the village of Ilyinsky Pogost, not far from the city Yegoryevsk.

After landing, crew commander V.D. Popov, co-pilot E.V. Elyan and navigator V.V. Vyazigin left the plane through the cockpit window. Engineers V.M. Kulesh, V.A. Isaev, V.N. Stolpovsky, who were in the cabin, left the aircraft through the front entrance door. Flight engineers O. A. Nikolaev and V. L. Venediktov found themselves trapped in their workplace by structures that were deformed during landing and died. (The deflected nose cone touched the ground first, worked like a bulldozer blade, picking up soil, and rotated under its belly, entering the fuselage.) On June 1, 1978, Aeroflot stopped supersonic passenger flights forever.

Improving supersonic aircraft

Work on improving the supersonic aircraft continued for several more years. Five production aircraft were produced; another five were under construction. A new modification has been developed - Tu-144D (long-range). However, the choice of a new engine (more economical), RD-36-51, required significant redesign of the aircraft, especially the power plant. Serious design gaps in this area led to a delay in the release of the new airliner. Only in November 1974, the serial Tu-144D (tail number 77105) took off, and nine (!) years after its first flight, on November 1, 1977, the supersonic aircraft received a certificate of airworthiness. Passenger flights opened on the same day. During their short operation, the liners carried 3,194 passengers. On May 31, 1978, flights were stopped: a fire broke out on one of the production Tu-144Ds, and the airliner suffered a disaster, crashing during an emergency landing.

The disasters in Paris and Yegoryevsk led to the fact that interest in the project on the part of the state decreased. From 1977 to 1978, 600 problems were identified. As a result, already in the 80s, it was decided to remove the supersonic aircraft, explaining this with “a bad effect on people’s health when crossing the sound barrier.” Nevertheless, four out of five Tu-144Ds in production were still completed. Subsequently, they were based in Zhukovsky and took to the air as flying laboratories. A total of 16 supersonic aircraft were built (including long-range modifications), which made a total of 2,556 sorties. By the mid-90s, ten of them had survived: four in museums (Monino, Kazan, Kuibyshev, Ulyanovsk); one remained at the plant in Voronezh, where it was built; another one was in Zhukovsky along with four Tu-144Ds.

Subsequently, the Tu-144D was used only for cargo transportation between Moscow and Khabarovsk. In total, the supersonic aircraft made 102 flights under the Aeroflot flag, of which 55 were passenger flights (3,194 passengers were carried).

Later, supersonic aircraft made only test flights and a few flights to set world records.

The Tu-144LL was equipped with NK-32 engines due to the lack of serviceable NK-144 or RD-36-51, similar to those used on the Tu-160, various sensors and test monitoring and recording equipment.

A total of 16 Tu-144 airliners were built, which made a total of 2,556 sorties and flew 4,110 hours (among them, aircraft 77144 flew the most, 432 hours). The construction of four more airliners was never completed.

What happened to the planes

A total of 16 were built - sides 68001, 77101, 77102, 77105, 77106, 77107, 77108, 77109, 77110, 77111, 77112, 77113, 77114, 77115, 77116 and 77144.

Those remaining in flying condition do not currently exist. The sides of the Tu-144LL No. 77114 and TU-144D No. 77115 are almost completely complete with parts and can be restored to flight condition.

In repairable condition, TU-144LL No. 77114, which was used for NASA tests, is stored at the airfield in Zhukovsky.

TU-144D No. 77115 is also stored at the airfield in Zhukovsky. In 2007, both airliners were repainted and exhibited for public viewing at the MAKS-2007 air show.

No. 77114 and No. 77115 will most likely be installed as monuments or displayed at the airfield in Zhukovsky. In 2004-2005, some transactions were made with them to sell them for scrap metal, but protests from the aviation community led to their preservation. The danger of selling them for scrap metal has not been completely eliminated. The questions of whose ownership they will become have not been finally resolved.

The photograph contains the signature of the first cosmonaut who landed on the moon, Neil Armstrong, pilot cosmonaut Georgiy Timofeevich Beregovoy and all the dead crew members. Supersonic aircraft No. 77102 crashed during a demonstration flight at the Le Bourget air show. All 6 crew members (Honored test pilot Hero of the Soviet Union M.V. Kozlov, test pilot V.M. Molchanov, navigator G.N. Bazhenov, deputy chief designer, engineer Major General V.N. Benderov, leading engineer B.A. Pervukhin and flight engineer A.I. Dralin) died.

From left to right. Six crew members on board supersonic aircraft No. 77102: Honored Test Pilot Hero of the Soviet Union M.V. Kozlov, Test Pilot V.M. Molchanov, Navigator G.N. Bazhenov, Deputy Chief Designer, Engineer Major General V.N. Benderov, leading engineer B.A. Pervukhin and flight engineer A.I. Dralin (unfortunately, she did not specify who is in order). Next is the pilot-cosmonaut twice Hero of the Soviet Union, Major General Beregovoy Georgy Timofeevich, behind him on the left is Lavrov Vladimir Aleksandrovich, then the first American cosmonaut to land on the moon Neil Armstrong, then (standing behind Neil) - Stepan Gavrilovich Korneev (head of the Internal Affairs Directorate from the Department of External Relations Presidium of the Academy of Sciences), in the center Andrey Nikolaevich Tupolev - Soviet aircraft designer, academician of the USSR Academy of Sciences, Colonel General, three times Hero of Socialist Labor, Hero of Labor of the RSFSR, then Alexander Alexandrovich Arkhangelsky, chief designer of the plant, Soviet aircraft designer, Doctor of Technical Sciences, Honored Scientist and technicians of the RSFSR, Hero of Socialist Labor. Far right is Tupolev Alexey Andreevich (son of A.N. Tupolev) - Russian aircraft designer, academician of the Russian Academy of Sciences, academician of the USSR Academy of Sciences since 1984, Hero of Socialist Labor. The photo was taken in 1970. Captions on the photo of G.T. Beregovoy and Neil Armstrong.

Concord

Concorde accident.

Currently, the liner is not in operation due to the disaster on July 25, 2000. On April 10, 2003, British Airways and Air France announced their decision to cease commercial operations of their Concorde fleet. The last flights took place on October 24. Concorde's final flight took place on November 26, 2003, with G-BOAF (the last aircraft built) departing Heathrow, flying over the Bay of Biscay, passing over Bristol, and landing at Filton Airport.

Why are supersonic aircraft no longer in use?

Tupolev's supersonic aircraft is often called the "lost generation." Intercontinental flights are considered uneconomical: per hour of flight, a supersonic plane burns eight times more fuel than a regular passenger plane. For the same reason, long-distance flights to Khabarovsk and Vladivostok were not justified. It is not advisable to use the supersonic Tu as a transport airliner due to its small carrying capacity. True, passenger transportation on it nevertheless became a prestigious and profitable business for Aeroflot, although tickets were considered very expensive at that time. Even after the official closure of the project, in August 1984, the head of the Zhukovsky flight test base Klimov, the head of the design department Pukhov and deputy chief designer Popov, with the support of supersonic flight enthusiasts, restored and commissioned two airliners, and in 1985 they obtained permission to fly for setting world records. The crews of Aganov and Veremey set more than 18 world records in the class of supersonic aircraft - in speed, climb rate and flight range with cargo.

On March 16, 1996, a series of research flights of the Tu-144LL began in Zhukovsky, which marked the beginning of the development of the second generation of supersonic passenger airliners.

95-99 years. The supersonic aircraft with tail number 77114 was used by the American NASA as a flying laboratory. Received the name Tu-144LL. The main purpose is research and testing of American developments to create our own modern supersonic aircraft for passenger transportation.

On December 31, 1968, the world's first supersonic passenger aircraft, the Tu-144, made a test flight. Three years later, in the summer of 1971, he made an incredible impression on the organizers and guests of the International Aviation Exhibition in Paris. To demonstrate the capabilities of the “Soviet bird,” the developers sent the plane from Moscow at 9 a.m. and at the same time, at 9 a.m., it landed in the capital of Bulgaria.

Design of the supersonic aircraft Tu - 144.

Tu-144 is a Soviet supersonic aircraft developed by the Tupolev Design Bureau in the 1960s. Along with Concorde, it is one of only two supersonic airliners ever used by airlines for commercial travel.
In the 60s, projects to create a passenger supersonic aircraft with a maximum speed of 2500-3000 km/h and a flight range of at least 6-8 thousand km were actively discussed in aviation circles in the USA, Great Britain, France and the USSR. In November 1962, France and Great Britain signed an agreement on the joint development and construction of Concorde (Concord).

Creators of a supersonic aircraft.

In the Soviet Union, the design bureau of academician Andrei Tupolev was involved in the creation of a supersonic aircraft. At a preliminary meeting of the Design Bureau in January 1963, Tupolev stated:
“Reflecting on the future of air transportation of people from one continent to another, you come to a clear conclusion: supersonic airliners are undoubtedly needed, and I have no doubt that they will come into use…”
The academician's son, Alexey Tupolev, was appointed as the lead designer of the project. More than a thousand specialists from other organizations worked closely with his design bureau. The creation was preceded by extensive theoretical and experimental work, which included numerous tests in wind tunnels and natural conditions during analogue flights.

Concorde and Tu-144.

The developers had to rack their brains to find the optimal design for the machine. The speed of the designed airliner is fundamentally important - 2500 or 3000 km/h. The Americans, having learned that the Concorde is designed for 2500 km/h, announced that just six months later they would release their passenger Boeing 2707, made of steel and titanium. Only these materials could withstand the heating of the structure when in contact with air flow at speeds of 3000 km/h and above without destructive consequences. However, solid steel and titanium structures still have to undergo serious technological and operational testing. This will take a lot of time, and Tupolev decides to build a supersonic aircraft from duralumin, designed for a speed of 2500 km/h. The American Boeing project was subsequently completely closed.
In June 1965, the model was shown at the annual Paris Air Show. Concorde and Tu-144 turned out to be strikingly similar to each other. Soviet designers said - nothing surprising: the general shape is determined by the laws of aerodynamics and the requirements for a certain type of machine.

Supersonic aircraft wing shape.

But what should the wing shape be? We settled on a thin delta wing with the front edge shaped like the letter “8”. The tailless design - inevitable with such a design of the load-bearing plane - made the supersonic airliner stable and well controllable in all flight modes. Four engines were located under the fuselage, closer to the axis. The fuel is placed in coffered wing tanks. The trim tanks, located in the rear fuselage and wing swells, are designed to change the position of the center of gravity during the transition from subsonic to supersonic flight speeds. The nose was made sharp and smooth. But how can pilots have forward visibility in this case? They found a solution - the “bowing nose.” The fuselage had a circular cross-section and had a cockpit nose cone that tilted downward at an angle of 12 degrees during takeoff and 17 degrees during landing.

A supersonic plane takes to the sky.

The first supersonic aircraft took to the skies on the last day of 1968. The car was flown by test pilot E. Elyan. As a passenger aircraft, it was the first in the world to overcome the speed of sound in early June 1969, at an altitude of 11 kilometers. The supersonic aircraft reached the second speed of sound (2M) in mid-1970, at an altitude of 16.3 kilometers. The supersonic aircraft incorporates many design and technical innovations. Here I would like to note such a solution as the front horizontal tail. When using PGO, flight maneuverability was improved and speed was reduced during landing. The domestic supersonic aircraft could be operated from two dozen airports, while the French-English Concorde, having a high landing speed, could land only at a certified airport. The designers of the Tupolev Design Bureau did a colossal job. Take, for example, full-scale tests of a wing. They took place on a flying laboratory - the MiG-21I, modified specifically for testing the design and equipment of the wing of the future supersonic aircraft.

Development and modification.

Work on the development of the basic design of "044" went in two directions: the creation of a new economical afterburning turbojet engine of the RD-36-51 type and a significant improvement in the aerodynamics and design of the supersonic aircraft. The result of this was to meet the requirements for supersonic flight range. The decision of the commission of the USSR Council of Ministers on the version of the supersonic aircraft with the RD-36-51 was made in 1969. At the same time, at the proposal of the MAP - MGA, a decision is made, before the creation of the RD-36-51 and their installation on a supersonic aircraft, on the construction of six supersonic aircraft with the NK-144A with reduced specific fuel consumption. The design of serial supersonic aircraft with the NK-144A was supposed to be significantly modernized, significant changes in aerodynamics would be made, obtaining a Kmax of more than 8 in supersonic cruising mode. This modernization was supposed to ensure the fulfillment of the requirements of the first stage in terms of range (4000-4500 km), and in the future it was planned to transition to series on RD-36-51.

Construction of a modernized supersonic aircraft.

Construction of the pre-production modernized Tu-144 (“004”) began at MMZ “Experience” in 1968. According to calculated data with NK-144 engines (Cp = 2.01), the estimated supersonic range was supposed to be 3275 km, and with NK-144A ( Average = 1.91) exceed 3500 km. In order to improve the aerodynamic characteristics in cruising mode M = 2.2, the wing planform was changed (the sweep of the floating part along the leading edge was reduced to 76°, and the base one was increased to 57°), the shape of the wing became closer to the "Gothic". Compared to the "044", the wing area increased, a more intense conical twist of the end parts of the wing was introduced. However, the most important innovation in the aerodynamics of the wing was the change in the middle part of the wing, which ensured self-balancing in cruising mode with minimal loss of quality, taking into account optimization of flight deformations of the wing in this mode. The length of the fuselage was increased to accommodate 150 passengers, and the shape of the nose was improved, which also had a positive effect on aerodynamics.

Unlike "044", each pair of engines in paired engine nacelles with air intakes was moved apart, freeing the lower part of the fuselage from them, unloading it from increased temperature and vibration loads, while changing the lower surface of the wing in the place of the calculated area of ​​flow compression, increasing the gap between the lower surface wing and the upper surface of the air intake - all this made it possible to more intensively use the effect of compressing the flow at the entrance to the air intakes on the Kmax than was possible to achieve on the "044". The new layout of the engine nacelles required changes to the chassis: the main landing gear was placed under the engine nacelles, with them retracted inside between the air ducts of the engines, they switched to an eight-wheeled trolley, and the scheme for retracting the nose landing gear also changed. An important difference between “004” and “044” was the introduction of a front multi-section destabilizer wing retractable in flight, which extended from the fuselage during takeoff and landing modes, and made it possible to ensure the required balancing when the elevons-flaps were deflected. Design improvements, an increase in payload and fuel reserves led to an increase in take-off weight, which exceeded 190 tons (for "044" - 150 tons).

Pre-production Tu-144.

Construction of pre-production supersonic aircraft No. 01-1 (tail No. 77101) was completed at the beginning of 1971, and made its first flight on June 1, 1971. According to the factory test program, the vehicle completed 231 flights, lasting 338 hours, of which 55 hours flew at supersonic speed. On this machine, complex issues of interaction of the power plant in various flight modes were worked out. On September 20, 1972, the car flew along the Moscow-Tashkent highway, while the route was covered in 1 hour 50 minutes, the cruising speed during the flight reached 2500 km/h. The pre-production vehicle became the basis for the deployment of serial production at the Voronezh Aviation Plant (VAZ), which, by decision of the government, was entrusted with the development of a supersonic aircraft in a series.

First flight of the production Tu-144.

The first flight of serial supersonic aircraft No. 01-2 (tail No. 77102) with NK-144A engines took place on March 20, 1972. In the series, based on the results of tests of the pre-production vehicle, the aerodynamics of the wing were adjusted and its area was once again slightly increased. The take-off weight in the series reached 195 tons. By the time of operational testing of production vehicles, the specific fuel consumption of the NK-144A was intended to be increased to 1.65-1.67 kg/kgf/hour by optimizing the engine nozzle, and subsequently to 1.57 kg/kgf/hour, while the flight range should was increased to 3855-4250 km and 4550 km, respectively. In reality, they were able to achieve by 1977, during testing and development of the Tu-144 and NK-144A series, Average = 1.81 kg/kgf hour in cruising supersonic thrust mode 5000 kgf, Average = 1.65 kg/kgf hour in takeoff afterburner thrust mode 20000 kgf, Av = 0.92 kg/kgf hour in the cruising subsonic mode of thrust 3000 kgf and in the maximum afterburning mode in the transonic mode we received 11800 kgf. A fragment of a supersonic aircraft.

First stage of testing.

In a short period of time, in strict accordance with the program, 395 flights were completed with a total flight time of 739 hours, including more than 430 hours in supersonic modes.

Second stage of testing.

At the second stage of operational testing, in accordance with the joint order of the ministers of aviation industry and civil aviation dated September 13, 1977 No. 149-223, a more active connection of civil aviation facilities and services took place. A new testing commission was formed, headed by Deputy Minister of Civil Aviation B.D. Rude. By decision of the commission, then confirmed by a joint order dated September 30 - October 5, 1977, crews were appointed to conduct operational tests:
First crew: pilots B.F. Kuznetsov (Moscow State Transport Administration), S.T. Agapov (ZhLIiDB), navigator S.P. Khramov (MTU GA), flight engineers Yu.N. Avaev (MTU GA), Yu.T. Seliverstov (ZhLIiDB), leading engineer S.P. Avakimov (ZhLIiDB).
Second crew: pilots V.P. Voronin (MSU GA), I.K. Vedernikov (ZhLIiDB), navigator A.A. Senyuk (MTU GA), flight engineers E.A. Trebuntsov (MTU GA) and V.V. Solomatin (ZhLIiDB), leading engineer V.V. Isaev (GosNIIGA).
Third crew: pilots M.S. Kuznetsov (GosNIIGA), G.V. Voronchenko (ZhLIiDB), navigator V.V. Vyazigin (GosNIIGA), flight engineers M.P. Isaev (MTU GA), V.V. Solomatin (ZhLIiDB), leading engineer V.N. Poklad (ZhLIiDB).
Fourth crew: pilots N.I. Yurskov (GosNIIGA), V.A. Sevankaev (ZhLIiDB), navigator Yu.A. Vasiliev (GosNIIGA), flight engineer V.L. Venediktov (GosNIIGA), leading engineer I.S. Mayboroda (GosNIIGA).

Before the start of testing, a lot of work was done to review all the materials received in order to use them “for credit” for meeting specific requirements. However, despite this, some civil aviation specialists insisted on implementing the “Operational Test Program for Supersonic Aircraft,” developed at GosNIIGA back in 1975 under the leadership of leading engineer A.M. Teteryukov. This program essentially required the repetition of previously completed flights in the amount of 750 flights (1200 flight hours) on MGA routes.
The total volume of operational flights and tests for both stages will be 445 flights with 835 flight hours, of which 475 hours are in supersonic modes. 128 paired flights were performed on the Moscow-Alma-Ata route.

The final stage.

The final stage of testing was not stressful from a technical point of view. Rhythmic work according to schedule was ensured without serious failures or major defects. The engineering and technical crews “had fun” by assessing household equipment in preparation for passenger transportation. Flight attendants and relevant specialists from GosNIIGA, who were involved in the tests, began to conduct ground training to develop the technology for servicing passengers in flight. The so-called “pranks” and two technical flights with passengers. The “raffle” was held on October 16, 1977 with a complete simulation of the cycle of ticket check-in, baggage check-in, passenger boarding, flight of actual duration, passenger disembarkation, baggage check-in at the destination airport. There was no end to the “passengers” (the best workers of OKB, ZhLIiDB, GosNIIGA and other organizations). The diet during the “flight” was at the highest level, since it was based on the first class menu, everyone enjoyed it very much. The “raffle” made it possible to clarify many important elements and details of passenger service. On October 20 and 21, 1977, two technical flights were carried out along the Moscow-Alma-Ata highway with passengers. The first passengers were employees of many organizations that were directly involved in the creation and testing of the supersonic aircraft. Today it is even difficult to imagine the atmosphere on board: there was a feeling of joy and pride, great hope for development against the backdrop of first-class service, to which technical people are absolutely not accustomed. On the first flights, all the heads of the parent institutes and organizations were on board.

The road is open for passenger traffic.

The technical flights went off without any serious problems and showed that the supersonic aircraft and all ground services were fully prepared for regular transportation. On October 25, 1977, the Minister of Civil Aviation of the USSR B.P. Bugaev and the Minister of Aviation Industry of the USSR V.A. Kazakov approved the main document: “Act on the results of operational tests of a supersonic aircraft with NK-144 engines” with a positive conclusion and conclusions.
Based on the presented tables of compliance of the Tu-144 with the requirements of the Temporary Airworthiness Standards for Civilian Tu-144 of the USSR, the full volume of submitted evidentiary documentation, including acts on state and operational tests, on October 29, 1977, Chairman of the State Aviation Register of the USSR I.K. Mulkijanov approved the conclusion and signed the first airworthiness certificate in the USSR, type No. 03-144, for a supersonic aircraft with NK-144A engines.
The road was open for passenger traffic.

The road was open for passenger traffic.
The supersonic aircraft could land and take off at 18 airports in the USSR, while Concorde, whose takeoff and landing speed was 15% higher, required a separate landing certificate for each airport.

The second production copy of a supersonic aircraft.

In June 1973, the 30th International Paris Air Show took place in France. The interest generated by the Soviet Tu-144 airliner, the world's first supersonic aircraft, was enormous. On June 2, thousands of visitors to the air show in the Paris suburb of Le Bourget watched the second production copy of a supersonic aircraft take to the runway. The roar of four engines, a powerful take-off - and now the car is in the air. The sharp nose of the airliner straightened and aimed at the sky. The supersonic Tu, led by Captain Kozlov, made its first demonstration flight over Paris: having gained the required altitude, the car went beyond the horizon, then returned and circled over the airfield. The flight proceeded normally, no technical problems were noted.
The next day, the Soviet crew decided to show everything that the new one was capable of.

Disaster during a demonstration.

The sunny morning of June 3 did not seem to foretell trouble. At first everything went according to plan - the audience raised their heads and applauded in unison. The supersonic aircraft, showing the “top class”, began to descend. At that moment, a French Mirage fighter appeared in the air (as it later turned out, it was filming an air show). A collision seemed inevitable. In order not to crash into the airfield and spectators, the crew commander decided to rise higher and pulled the steering wheel towards himself. However, the height had already been lost, creating large loads on the structure; As a result, the right wing cracked and fell off. A fire started there, and a few seconds later the flaming supersonic plane rushed to the ground. A terrible landing occurred on one of the streets of the Parisian suburb of Goussainville. The giant machine, destroying everything in its path, crashed to the ground and exploded. The entire crew - six people - and eight Frenchmen on the ground were killed. Goosenville also suffered - several buildings were destroyed. What led to the tragedy? According to most experts, the cause of the disaster was the attempt of the crew of a supersonic aircraft to avoid a collision with the Mirage. During landing, the Tu was caught in a wake from the French Mirage fighter.

The photograph contains the signature of the first cosmonaut who landed on the moon, Neil Armstrong, pilot cosmonaut Georgiy Timofeevich Beregovoy and all the dead crew members. Supersonic aircraft No. 77102 crashed during a demonstration flight at the Le Bourget air show. All 6 crew members (Honored test pilot Hero of the Soviet Union M.V. Kozlov, test pilot V.M. Molchanov, navigator G.N. Bazhenov, deputy chief designer, engineer Major General V.N. Benderov, leading engineer B.A. Pervukhin and flight engineer A.I. Dralin) died.

According to the employees of the A.N. Tupolev Design Bureau, the cause of the disaster was the connection of an undebugged analog block of the control system, which led to a destructive overload.
According to the pilots, emergency situations occurred on almost every flight. On May 23, 1978, the second supersonic plane crashed. An improved experimental version of the airliner, Tu-144D (No. 77111), after a fuel fire in the engine nacelle area of ​​the 3rd power plant due to the destruction of the fuel line, smoke in the cabin and the crew turning off two engines, made an emergency landing on a field near the village of Ilyinsky Pogost, not far from the city Yegoryevsk.
After landing, crew commander V.D. Popov, co-pilot E.V. Elyan and navigator V.V. Vyazigin left the plane through the cockpit window. Engineers V.M. Kulesh, V.A. Isaev, V.N. Stolpovsky, who were in the cabin, left the aircraft through the front entrance door. Flight engineers O. A. Nikolaev and V. L. Venediktov found themselves trapped in their workplace by structures that were deformed during landing and died. (The deflected nose cone touched the ground first, worked like a bulldozer blade, picking up soil, and rotated under its belly, entering the fuselage.) On June 1, 1978, Aeroflot stopped supersonic passenger flights forever.

Improving supersonic aircraft.

Work on improving the supersonic aircraft continued for several more years. Five production aircraft were produced; another five were under construction. A new modification has been developed - Tu-144D (long-range). However, the choice of a new engine (more economical), RD-36-51, required significant redesign of the aircraft, especially the power plant. Serious design gaps in this area led to a delay in the release of the new airliner. Only in November 1974, the serial Tu-144D (tail number 77105) took off, and nine (!) years after its first flight, on November 1, 1977, the supersonic aircraft received a certificate of airworthiness. Passenger flights opened on the same day. During their short operation, the liners carried 3,194 passengers. On May 31, 1978, flights were stopped: a fire broke out on one of the production Tu-144Ds, and the airliner suffered a disaster, crashing during an emergency landing.
The disasters in Paris and Yegoryevsk led to the fact that interest in the project on the part of the state decreased. From 1977 to 1978, 600 problems were identified. As a result, already in the 80s, it was decided to remove the supersonic aircraft, explaining this with “a bad effect on people’s health when crossing the sound barrier.” Nevertheless, four out of five Tu-144Ds in production were still completed. Subsequently, they were based in Zhukovsky and took to the air as flying laboratories. A total of 16 supersonic aircraft were built (including long-range modifications), which made a total of 2,556 sorties. By the mid-90s, ten of them had survived: four in museums (Monino, Kazan, Kuibyshev, Ulyanovsk); one remained at the plant in Voronezh, where it was built; another one was in Zhukovsky along with four Tu-144Ds.

Subsequently, the Tu-144D was used only for cargo transportation between Moscow and Khabarovsk. In total, the supersonic aircraft made 102 flights under the Aeroflot flag, of which 55 were passenger flights (3,194 passengers were carried).
Later, supersonic aircraft made only test flights and a few flights to set world records.
The Tu-144LL was equipped with NK-32 engines due to the lack of serviceable NK-144 or RD-36-51, similar to those used on the Tu-160, various sensors and test monitoring and recording equipment.
A total of 16 Tu-144 airliners were built, which made a total of 2,556 sorties and flew 4,110 hours (among them, aircraft 77144 flew the most, 432 hours). The construction of four more airliners was never completed.

At OKB im. A.N. Tupolev, development is underway on a second-generation supersonic passenger aircraft (SPS), which is named Tu-244.

Work on SPS-2 was and is being carried out at the A.N. Design Bureau. Tupolev for 30 years. Over the years, several different Tu-244 designs were prepared (Tu-244-400, Tu-244A-200, Tu-244B-200 and others), differing in aerodynamic layout, specific design solutions for the airframe, power plant and flight performance data .

The chief designer on the SPS-2 theme is A.L. Pukhov, technical supervision of work on the Tu-244 is provided by M.I. Kazakov.

The Tu-244 aircraft embodies the “tailless” design, with the absence of horizontal tail, the aircraft will have four turbojet engines, placed one at a time in separate engine nacelles.

The layout of the Tu-244 is aimed at ensuring high aerodynamic quality both at supersonic cruising and at takeoff and landing modes to reduce noise levels, as well as creating increased comfort for passengers.

The wing of the Tu-244 is trapezoidal in plan with an influx, has a complex deformation of the middle surface and a variable profile along the span.

The wing contains fuel caisson tanks and niches for cleaning the main landing gear.

The fuselage consists of a pressurized cabin, nose and tail compartments. The choice of the optimal fuselage diameter depends on passenger capacity. For a number of passengers of 250-320, the optimal fuselage is 3.9 m wide and 4.1 m high.

The plane does not have a fixed nose, like the Tu-144. There is no ordinary cockpit “canopy” either. The glazing of the cockpit provides the necessary visibility during flight, and during takeoff, landing and movement on the ground, the required visibility of the runway is ensured by an optical-electronic vision system that operates in all weather conditions.

The landing gear consists of a front strut and three main ones, of which the outer ones have three-axle bogies and are retracted into the wing, and the middle strut has a two-axle bogie and is retracted into the fuselage. The prototype of the nose support is the strut of the Tu-144 aircraft.

The SPS-2 Tu-244 project has been worked out quite deeply and, in principle, can be implemented. But we need money, and a lot of it.

BASIC DATA OF THE TU-244A-200 AIRCRAFT

Take-off weight, kg 325,000

Empty weight of the aircraft, kg 172,000

Fuel mass, kg 160,000

Passenger capacity, persons 268

Cruising speed, km/h M=2 Flight altitude, m 18,000-20,000

Flight range, km 9200

Aircraft length, m 88

Aircraft height, m ​​15

Wingspan, m 45

Wing area, m2 965

Fuselage diameter, m 3.9

Required runway length, m 3000

Supersonic aviation will find its place on passenger routes. Supersonic aircraft of the new generation will already differ significantly from their older brothers (Tu-144, Concorde) in speed, altitude, design, and materials.

The birth of a passenger “supersonic” aircraft that meets all modern international standards and norms is not only a structurally complex task, but also a very expensive one.

March 17, 1996 at the flight test base of the Design Bureau named after. A.N. Tupolev in Zhukovsky a ceremonial rollout of the modified Tu-144LL took place. And on November 29, 1996, the first flight of the Tu-144LL took place. It was lifted into the sky by the leading test pilot, chief pilot of the Tupolev company S.G. Borisov and co-pilot, Hero of the Soviet Union, Honored Test Pilot of the USSR B.I. Veremey.

Russia’s significant contribution to the development of SPS-2 was the creation of the Tu-144 LL “Moscow” flying laboratory on the basis of the serial Tu-144D. Work on the Tu-144LL was carried out within the framework of international cooperation with the United States, with active funding from the Americans. For conversion into a flying laboratory, a serial Tu-144D was chosen, on which the RD-36-51A engines were replaced with NK-321 engines (modifications of the NK-32 of the Tu-160 strategic supersonic bomber). Maximum takeoff thrust - 4x21,000 kg. New engine nacelles with modified air intakes were installed on the plane, the wing was strengthened, the fuel and other systems were modified, and a large amount of monitoring and recording equipment was installed on board.

According to the program, it was planned to carry out two ground and six flight experiments on the supersonic Tu-144LL. A total of 32 flights and all on Russian territory.

After completing the planned research program as part of the creation of the second-generation supersonic passenger aircraft Tu-244, the Tu-144LL aircraft turned out to be unclaimed, and in 2001 it was sold through an Internet auction to an anonymous resident of Texas (USA) for $11 million. This is not the first time that the Tu-144 has been sold abroad. In October 2000, a German museum bought one such aircraft for half a million dollars.

BASIC DATA OF THE TU-144LL AIRCRAFT

Take-off weight, kg 20 700

Empty weight of the aircraft, kg 96,810

Flight range, km 6500

Flight altitude, m 18,800

Cruising speed, km/h M = 2

Maximum speed, km/h M = 2.37

Lift-off speed, km/h 370

Approach speed, km/h 280

Fuel capacity, kg 102,000

Crew (in experimental version), people. 7

Aircraft length, m 65.7

Wingspan, m 28.9

Wing area, m2 507

Aircraft height, m ​​12.6

Run length, m 2225

Run length, m 1310

In the second half of the 90s at the OKB im. A.N. Tupolev on his own initiative, chief designer of SPS (supersonic passenger aircraft) A.L. Pukhov prepared a technical proposal for the conversion of the serial missile carrier-bomber Tu-22MZ into the administrative supersonic passenger aircraft Tu-344. They were offered several options for reworking the basic design of the Tu-22MZ. It was planned to place 10-12 and 24-30 passenger seats in the fuselage for business flights. The expected flight range of the Tu-344 in subsonic mode is 7,700 km.

The project of the supersonic administrative aircraft Tu-444 seems to be the most promising. This is essentially the SPS-2 concept on a scaled down scale.

JSC Tupolev has created the appearance of the supersonic administrative aircraft Tu-444, which will be able to carry 6-10 passengers over a distance of 7500 km.

Airplane. The Tu-444 is made according to the “tailless” aerodynamic configuration with a low-mounted cantilever wing with developed root overhangs. The vertical tail is single-fin, all-moving.

On the serial Tu-444 it is planned to use the AL-32M afterburning turbojet engine from NPO Saturn.

The aircraft will be equipped with a full range of systems and life support equipment for passengers and crew in flight and emergency rescue equipment.

There are great difficulties on the way to creating such an aircraft, the main of which are related to the environment. If the aircraft does not meet the requirements of the KAO for local noise, then the market for it will be extremely narrow. The fact is that in this case the plane will be allowed to fly at supersonic speed only over the ocean. Over land, a supersonic executive aircraft will be forced to fly at subsonic speeds, no different from modern business class aircraft.

Serial production of the Tu-444 will begin after the necessary funds have been found.

Aircraft designers believe that supersonic business jets have a bright future, even despite their high cost.

Undoubtedly, the implementation of this program will become a real link between the Tu-144 and promising supersonic civil aviation.

BASIC DATA OF SUPERSONIC ADMINISTRATIVE AIRCRAFT TU-444

Maximum take-off weight, kg 41,000

Empty weight, kg 19,300 Maximum payload, kg 1000

Maximum fuel weight, kg 20,500 Cruising speed:

Supersonic, km/h 2125

Subsonic, km/h 1050 Practical flight range

with fuel reserve, km 7500

Number of passengers, people 6-10 Crew (pilots + flight attendants), persons. 2+1

Number of engines 2

Engine starting thrust, kg 9700

Aircraft length, m 36

Wingspan, m 16.2

Wing area, m2 132

Aircraft height, m ​​6.51

Rowing length B P P, m 1830